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On the Largest Zeroes of Orthogonal Polynomials
for Certain Weights

By D. S. Lubinsky* and A. Sharif

Abstract. The asymptotic growth of the largest zero of the orthogonal polynomials for the
weights W(x) =| x |"exp(—k|log| x| [) is investigated.

1. Introduction. Freud [3], [4] investigated the largest zeroes of orthogonal poly-
nomials for weights on (— o, o0). Nevai and Dehesa [5] studied the sums of powers
of zeroes of orthogonal polynomials. Here we investigate the asymptotic growth of
the largest zeroes for the weights

(1.1) W(x) =|x|"exp(—k|log|x|[), x € (—o0,00)
wherec > 1; k> 0;b € (— o0, )

and

(1.2) W(x) = {; exp(—k |log x |), J;z((g,oo:)(,)]

wherec>1; k> 0; b € (— o0, 0).

When ¢ =2 and b =0 in (1.2), W(x) yields the Stieltjes-Wigert polynomials
(Chihara [1, 2]), and Chihara [2] has remarked that very little is known about their
zeroes.

2. Notation. Given a nonnegative measurable function W(x) on (— o0, o) for
which all moments

[e ]
un(W)=f x"W(x)dx, n=0,1,2,...,
— o0

exist, its orthogonal polynomials are
(W x)=v,(W) [] (x-—xj,,(W)), n=0,1,2,...,
j=1
satisfying

® . . !l m=n,
J7 pwin)p (W) ax = {0 I
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We let X (W) = max{‘xj,,(W)l :j=12,...,n}, n=1,2,.... Further, for each
positive 7, {, denotes the smallest possible number (if it exists) such that

(2.1) (§)W(5,) = max{x'W(x): x € (0,0)},

and assuming that

(2.2) ["110gW(scos8)|d8 <, € (0,00),
0

we define

G (W)= exp{qr"j:log W({cosﬂ)dﬂ}, ¢ €(0,0).

3. The Largest Zero.
LeEMMA 3.1. Let W(x) be given by (1.1). Then
lim o (W) /[d@n + b+ 1) Vexpl fan + b+ 1)/ )] =1,
where d = 2{2m(c — 1) (ke)/ V"N 2 and f = (¢ — 1)(ck)'/ 9.
Proof.

3.1) (W)= waxz"“’exp(—k(log x))dx+0(n")
1
= 2(ck‘/")—'f°°exp(—v + 0/ X))o Vdo+ O(n~"),
0

where X = (2n + b+ 1)k™'/¢ and x = exp((v/k)'/¢). Now apply the asymptotic
formula for the integral in (3.1), given in Olver [6, p. 84, Ex. 7.3]. 0O
Following is our main result.

THEOREM 3.2. Let W(x) be given by (1.1). Then

(1) lim (;—;)mc—l)log X, (W) =1.
| 1Ae=1)
) tim (52)7 log(n,(W)/m (W)} = 1.

Proof. (i) By Lemma 3 in Freud [3, p. 95], ;

(3.2) log X, (W) = (log py, (W) — log py,_4(W)) /2

=(f/{@n+b-1)"“"V—(@2n+b-3)"“""} + 0(n")
(by Lemma 3.1)

= (f/2)(2n)c/(c_l){c(c -1) "'+ O(n‘z)} +0(n7")
= (2n/kc)'/(c_ Dy O(n@=9/(e= D),

Next, for any { > 0 and A > 1, Theorem 2 in Freud [4, p. 52] shows that

2

§

(3.3) X (W) <At + 317;( )zn—lG{'(W)j:xz”"W(x) dx.
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Freud states this under the additional assumption that W(x) is positive in (— o0, 00),
but his proof is valid if (2.2) holds. It is easily seen that for some positive constant
K, independent of §,

(3.4) G(W) = K3'W(§). L€ (0.00).

Then taking § = §,,+,, and 4 = 2"/* where s € (0, o), we obtain, from (2.1), (3.3)
and (3.4),

4K 2 2n—1 .
0 n+s —1-2s
(3.5) Xn(W) <*A§2(n+s) + 377 (§2(,,+s)) {22((,,:5))f X 1-2 dx

An+s)
n/s -1
= §2(n+s)[2 7+ K0(3"75) ]

Next, for large ¢t € (0,00), ¢ is a root of d[x'W(x)]/dx =10 so log{, =
[(t + b)/kc]'/<~ D, Taking s = n® in (3.5) where

(3.6) 0<8<1 and 1—8(c—1)"",
we obtain
(37)  log X, (W) <[(2n + 2n® + b)/ke] " + n'~Plog2 + o(1).

The result follows from (3.2), (3.6) and (3.7).
(ii) follows from (i) and Theorem 1 in Freud [3, p.91]. O
Since

(x,(W)}"< X |xj,,(W)[’"<n{Xn(W)}m, m>0,n=1,2,...,
=1
we deduce that, for m > 0,

(k| [
lim (2_n) logd X |x,,(W)|": =m,

n— oo =1
which provides a contrast to the results of Nevai and Dehesa [5, Theorem 1].

COROLLARY 3.3. Let W(x) be given by (1.2). Then the conclusions (i), (ii) of
Theorem 3.2 remain true.

Proof. Let
WH(x) =|x| W(x?) =| x| exp(—k, |log | x[[*),  x € (—o0,00),
where k; = k2. Then, by Theorem 3.2,

(ke
(3.8) nlir?o (E) log X,,(W*) =1,
(ke /D _
nlfgo (E) IOg{an—j—I(W*)/an—j(W*)} =1 Jj=0,L

Further, the substitution x = u? yields p,(W; u*) = p,,(W*; u) and hence

(3.9) X(W) = (X, (W)Y 1(W) = n,(W*),
and the conclusions follow from (3.8) and (3.9). O
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For real b, and fixed positive k, let

k=" 2x? exp(—k?(log x)z), x € (0, 00),

Wy(x) =
’ 0, x €(—0,0].

Wigert [7] explicitly found p,(W,; x), n =1,2,..., while Chihara [2] constructed
discrete solutions of the moment problem corresponding to W, which provided
some information regarding the distribution of {x, (W;)}, . Using the relation

Wy(x) = a” Wy(x/a®),  x € (—w0, ),
where a = exp(1/4k?), it follows that
(W, x) = a P00/ 2p (W x/a??),  n=1.2,...,

and hence the results of Wigert [7] and Chihara [2] for W(x) generalize to W,(x),
any b € (— o0, o).
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